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Abstract

Wildfires have become increasingly prevalent and destructive in forest ecosystems
worldwide, necessitating a comprehensive understanding of post-fire recovery dynamics for effective
conservation and management. Remote sensing technology, coupled with vegetation indices such as
Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Green Red
Vegetation Index (GRVI), and Red Vegetation Index (RVI), offers a powerful means to investigate
these processes. In this study, we utilize remote sensing techniques to conduct a comparative analysis
of secondary ecological succession following wildfires in three distinct forest types (Coniferous,
Sclerophyll, and Mixed) of a forest affected by fire near Moguer, Spain. Through the acquisition and
analysis of multispectral satellite imagery, we monitored changes in vegetation health and recovery
across the region of interest. The NBR index allowed us to assess the severity and extent of wildfire
damage, while NDVI quantified vegetation greenness and regrowth. GRVI and RVI provided insights
into subtle variations in vegetation composition and health. We identified distinct temporal and
spatial patterns in post-fire recovery among the different forest types by applying these indices for the
period between 2017 and 2021. Our findings underscore the significance of understanding the diverse
responses of these ecosystems to wildfires. While common recovery patterns emerged, such as an
initial decrease in NDVI followed by regeneration, variations were observed in the timing and
magnitude of recovery. These distinctions are attributed to differences in species composition, fire
adaptations, and ecological processes specific to each forest type. In conclusion, the utilization of
NBR, NDVI, GRVI, and RVI indices allows for a more nuanced evaluation of post-fire recovery
dynamics.

Introduction

Wildfires have become an increasingly prevalent and destructive force in
forest ecosystems worldwide. These events have grown in both frequency and
intensity [1]. To effectively address these challenges, it is essential to gain a
comprehensive understanding of the dynamics of post-fire recovery. In this
context, remote sensing technology has emerged as an invaluable tool, allowing us
to observe and analyze these events from a broader perspective. Remote sensing
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techniques enable us to acquire data through multispectral satellite imagery,
facilitating a more detailed examination of post-fire recovery processes [2].

In this study, we aim to employ remote sensing technology and vegetation
indices to conduct a comparative analysis of secondary ecological succession
following wildfires in coniferous, sclerophyllous, and mixed forest types. By
utilizing the Normalized Burn Ratio (NBR)[3], Normalized Difference Vegetation
Index (NDVI[4], Green Red Vegetation Index (GRVI)[5], and Red Vegetation
Index (RVI)[6], we can assess the severity of wildfire damage and measure
vegetation greenness and regrowth, providing critical insights into the impact and
recovery of these ecosystems.

Normalized Burn Ratio (NBR) is commonly used to assess the severity of
burn scars and monitor post-fire vegetation recovery [7].

Normalized Difference Vegetation Index (NDVI) is widely utilized to
evaluate and monitor vegetation health and density, aiding in the assessment of
ecosystem dynamics [8].

Green-Red Vegetation Index (GRVI) is specifically designed to emphasize
the presence of green vegetation and is valuable in distinguishing plant vigor and
stress levels [6].

Ratio Vegetation Index (RVI) is often employed to measure the density
and vigor of vegetation cover, particularly in agricultural plots [6].

In this research, we are utilizing these indices to analyze the impact of a
recent wildfire on a local forest ecosystem's vegetation cover and health. By
integrating these indices, we can gain a comprehensive understanding of the post-
fire recovery process, the changes in vegetation density, and the overall ecosystem
resilience. The combination of these indices enables us to capture a holistic picture
of the complex vegetation dynamics, ensuring a more accurate assessment of the
recovery progress and facilitating informed management decisions for ecological
restoration.

The relevance and importance of this study are underscored by the urgent
need to comprehend how different forest types respond to contemporary wildfires.
Each forest type may exhibit unique patterns of post-fire recovery, influenced by
species composition, fire adaptations, and ecological processes specific to their
environment. This knowledge is critical for developing tailored strategies to
conserve and manage these ecosystems effectively.

Study area

The study area is situated close to Moguer town, in the province of Huelva,
within the autonomous community of Andalucia (Fig. 1). The fire was declared on
June 24, 2017, in Mazagoén, within the area corresponding to the municipal district
of Moguer, Huelva. It lasted a total of 10 days, and it was extinguished on July 4th.
It covers an area of 203.5 km? (20,350 ha) and is positioned at an elevation of
49 meters above sea level. Due to its location along the Huelva coastal area, the

95



study area experiences a Mediterranean climate with influences from the Atlantic,
resulting in a maritime climate pattern. The annual average temperature is 19.2°C
(Moguer climate station). During summer, the average air temperature is 26°C and
the maximum values reach up to 30°C.

Moguer has dry periods in June, July, and August. On average, December
is the wettest month with 72 mm of precipitation. On average, July is the driest
month with 1 mm of precipitation. The average amount of annual precipitation is
251 mm (https://www.eltiempo.es/moguer.html).
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Fig. 1. Map depicting the study area affected by the fire declared on June 24, 2017,
in Mazagon

Data and Methods
Data and data processing

A series of multispectral satellite images were acquired from the Landsat 8
satellite for post-wildfire dates, with a spatial resolution of 60 meters. The satellite
image pre-processing steps include georeferencing, layer stacking, subseting, etc.
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Input data processing

After the pre-processing, spectral vegetation indices were calculated
(Table 1). They were used to assess the post-fire vegetation dynamics and to
analyze the secondary ecological succession in individual forest types.

Table 1. Formulas for calculating the spectral vegetation indices, used in the present study

Spectral index  Abbreviation Formula References

No_rmalized i NIR — RED
leferer]ce NDVI = NIR T RED "
Vegetation

Index
Differenced
Normalized NDVlpost—fire = NDVIpre_sire
Difference dNDVI [9]
Vegetation

Index

Normalized NIR — SWIR
Burn Ratio NBR NBR = NIR + SWIR 3]

Differenced
Normalized dNBR NB Rpre—fire — NB Rpost—fire

Burn Ratio

Green-Red GREEN — RED

. GRVI = ————
Vegetation GRVI GREEN + RED [5]
Index

Differenced
Green-Red dGRVI GRVIpost—tire = GRVIprefire

Vegetation
Index

9]

Ratio Vegetation _ RED
Index RVI RVI =1R [6]
Differenced
Ratio Vegetation dRVI
Index

RVI post—fire — RVI pre—fire

Where NIR represents near-infrared reflectance, SWIR is shortwave
infrared reflectance, Red is red band reflectance, and Green denotes green band
reflectance.
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Analysis of Ecological Succession

Temporal trend analysis was conducted to examine the changes in
vegetation over time using the computed dNBR, dNDVI, dGRVI, and dRVI
indices. Spatial pattern recognition techniques, including GIS-based analysis, were
employed to identify the spatial distribution of different successional stages in the
post-fire forest ecosystem.

Software and Tools

Data processing and analysis were carried out using the ERDAS
IMAGINE software 2014 (https://hexagon.com/products/erdas-imagine) for image
preprocessing and the ArcGIS Pro platform [10] for spatial analysis and
visualization.

This research adhered to the ethical guidelines outlined by the International
Society for Photogrammetry and Remote Sensing (ISPRS). The limitations of this
study include the reliance on satellite data with a 60-meter resolution, which may
not capture fine-scale changes in vegetation.

Results

The results are structured to provide a comprehensive understanding of the
recovery dynamics, utilizing data from a four-year period (2018-2022) and
differential indices, including NBR, NDVI, GRVI, and RVI. The results are
organized according to each forest type (coniferous, sclerophyllous, and mixed
forests), highlighting the respective recovery rates, spatial and temporal variations
on the regeneration process.

When examining the distribution of dNDVI, dNBR, dGRVI, and dRVI

values across coniferous, sclerophyll, and mixed forests over multiple years (2018-
19 to 2021-22), distinct patterns emerge, shedding light on the vegetation health
and density within these ecosystems.
The coniferous forest consistently flaunted a dNDVI range of 0.1 to 0.2, signifying
robust, healthy vegetation recovery. Higher dNDVI values were sporadic.
Contrasting this, the mixed forest showed fluctuations, ranging from low to
moderate dNDVI values. In recent years, a notable shift towards lower values has
been seen, hinting at changing vegetation health. Meanwhile, the sclerophyll forest
remained steady, maintaining moderate dNDVI values consistently. Its narrative
whispered of unwavering stability in vegetation health over time.

The dNDVI for coniferous forests predominantly favored the 0.1 to
0.2 dNDVI range throughout, suggesting a consistent presence of healthy
vegetation, while the higher dNDVI ranges remained marginal (Fig. 2).
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Fig. 2. Classification Results of Four Differential Indexes Four Years Post-Wildfire.
The figure illustrates the distinct categorization and evolution of four key differential
indexes post-wildfire over a four-year period.




The dNDVI for mixed forest type varied between 0 to 0.2 dNDVI values,
showcasing a dynamic response to environmental changes, especially with a
significant shift towards lower dNDVI values in recent years (Fig. 3). The dNDVI
for sclerophyll forest type maintained a consistent presence within moderate
dNDVI values, hinting at stable vegetation health trends over the observed years
(Fig. 4). Figure 2. Classification Results of Four Differential Indexes Four Years
Post-Wildfire. The figure illustrates the distinct categorization and evolution of
four key differential indexes post-wildfire over a four-year period.
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Fig. 3. Percentage covered area per value for every index used for the study
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The dNBR for the coniferous forest showcased stability in burn severity,
primarily residing within the 0 to 0.1 and 0.1 to 0.2 dNBR ranges, indicating
minimal changes in post-fire recovery or severity (Fig. 3). The dNBR for mixed
forest type notably fluctuated between 0 to 0.3, indicating varied recovery stages or
potential environmental stressors influencing the forest (Fig. 2).

The dNBR for the sclerophyll forest type showed stability, predominantly
residing within 0 to 0.2 ranges, indicating consistent post-fire recovery or limited
variations (Fig. 3).
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Fig. 4. Trendlines through the years from 2018 to 2022 of the differencial indices dNDVI,

dNBR, dGRVI and dRVI

The dGRVI measurements for the three types of forests demonstrated
fluctuating patterns, showcasing 0.2 to 0.4 values initially, indicative of robust
vegetation recovery, particularly in grasses, within the first year. The subsequent
years displayed consistent but comparatively lower recovery rates, characterized by
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fluctuating dGRVI values, signifying a sustained yet moderated vegetation health
and density within this specialized primary growth environment (Fig. 2).

The initial high values of dRVI in certain sites during the first year
indicated robust recovery post-disturbance. However, subsequent years revealed
declining trends, with dRVI values decreasing over time and eventually reaching
negative values by the fourth year.
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Fig. 5. Correlations between the indices used in this study using linear regression
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This diminishing trajectory suggests an initial promising recovery that was
not sustained over the long term (Fig. 2).

The integration of dNDVI, dNBR, and dGRVI across the coniferous,
Mixed, and sclerophyll forests presents a multi-faceted understanding of these
ecosystems. While the coniferous and sclerophyll forests displayed relatively
consistent trends in vegetation health and recovery, the Mixed Forest stood out
with its pronounced variability, indicating a more dynamic response to
environmental factors or disturbances (Fig. 4).

The correlation analysis among the indices reveals distinct relationships:
a weak negative correlation (r = -0.311) between the change in dNDVI and dNBR,
hinting at a slight inverse trend between vegetation health and burn severity.
Meanwhile, a moderately positive correlation (r = 0.434) emerges between dNDVI
and dGRVI, suggesting parallel movements and potentially similar trends in
vegetation health and density changes.

The moderately positive correlation between these indices implies a more
aligned relationship between both, hinting that they may respond similarly to
changes in vegetation health.

This suggests that dGRVI might serve as a complementary indicator to
dNDVI in monitoring vegetation recovery, potentially capturing different types of
vegetation response after disturbances. However, the correlation between dNDVI
and dRVI is weak (r = 0.129), indicating a lesser association in measuring
vegetation recovery. Additionally, a weak negative correlation (r = -0.200) between
dNBR and dGRVI implies a subtle inverse relationship between burn severity and
fluctuations in vegetation health, while the correlation between dNBR and dRV1 is
negligible (r = -0.008), suggesting a lack of meaningful relationship between burn
severity and the RVI differential index in assessing recovery. This might suggest
that the dRVI measures aspects of recovery unrelated to burn severity, emphasizing
other factors influencing vegetation dynamics post-fire. Notably, a relatively strong
positive correlation (r = 0.620) between dGRVI and dRVI signifies a notable
tendency for these indices to move together, potentially reflecting similar patterns
in assessing vegetation health and density changes within the study area (Fig. 5).
This suggests that dGRVI and dRVI might capture similar aspects of vegetation
recovery, potentially providing redundant information or reinforcing each other's
assessments.

Conclusions

The comprehensive analysis spanning a four-year period from 2018 to
2022 has unearthed nuanced insights into the recovery dynamics of coniferous,
sclerophyllous, and mixed forests. Through the meticulous examination of
differential indices - NBR, NDVI, GRVI, and RVI - distinct patterns emerged,
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painting a vivid picture of vegetation health, density, and recovery post-
disturbance.

The coniferous forests boasted a consistent dNDVI range, reflecting robust
and sustained vegetation recovery, while sporadic higher values hinted at localized
vigor. Contrasting this, the mixed forests exhibited fluctuations, especially towards
lower dNDVI values in recent years, indicating evolving vegetation health.
Meanwhile, the sclerophyllous forests remained steadfast, maintaining moderate
dNDVI values, suggesting unwavering stability in vegetation health over time.

Similarly, the analysis of dNBR, dGRVI, and dRVI offered intriguing
insights. Coniferous forests showcased stability in burn severity, while the mixed
forests displayed fluctuations, hinting at varied recovery stages or environmental
stressors. Sclerophyllous forests demonstrated consistent post-fire recovery.

The correlations among these indices highlighted intriguing relationships.
A weak negative correlation between dNDVI and dNBR hinted at an inverse trend
between vegetation health and burn severity. Conversely, a moderately positive
correlation emerged between dNDVI and dGRVI, suggesting parallel movements
in vegetation health and density changes. Interestingly, the correlation between
dGRVI and dRVI indicated a notable tendency for these indices to move together,
potentially reflecting similar patterns in assessing vegetation recovery.

Looking ahead, future studies could benefit from delving into the influence
of various environmental factors, especially the dynamics of climate elements
during the research period. Accounting for these factors may provide a more
holistic understanding of vegetation dynamics post-disturbance. Conducting such
an analysis, while keeping other variables constant, could offer valuable insights
into the intricate interplay between environmental factors and vegetation recovery.
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CPABHUTEJIHU AHAJIN3U HA BTOPUYHA EKOJIOI'MYHA
CYKHECHSI CJIE T'OPCKH ITOXKAPHU B TP OTAEJIHA TUITA T'OPH.
ITPOYYBAH CJIYYAHU OT MOT'EP, UCITAHU A

. Monu, /I. Aéemucsan

Pesrome

I'opckuTe mokapy CTaBaT BCE IO-PAa3NpPOCTPAHEHH W Pa3PYLIUTETHH B
TOPCKUTE E€KOCHCTEMM II0 CBETa, KOETO Hajara LUIOCTHO pa3OupaHe Ha AHMHA-
MHUKaTa Ha BH3CTAHOBSBAHE CIieNl MOXKap 32 €EKTUBHO OMa3BaHe W YIpPaBJICHUE.
TexHonorusaTa 3a JUCTAaHIMOHHO HAOJIIOJEHHE, ChUYEeTaHa C MHIACKCH Ha pacTu-
TEJTHOCTTa KaTo HopManm3upaH koedummeHT Ha m3rapsHe (NBR), Hopmamusupan
uHIeKC Ha pasiaukuTe B pacturenHocrta (NDVI), 3eneH-uepBeH HMHIEGKC Ha
pactutenHoct (GRVI) u yepBen nnnekc Ha pactutenHoct (RVI), mpemnara MomrHo
CPEACTBO 3a HM3CIJIeIBAaHE HA TE3M NpouecH. B ToBa mpoyuyBaHe HHE H3MOJI3BaMe
TEXHUKH 32 JIMCTAaHIIMOHHO HaOII0/IeHHe, 3a J]a IPOBEEM CpaBHHUTEJICH aHAN3 Ha
BTOpHYHATA EKOJIOTHMYHA CYKIIECHsl CJIEJ TOPCKH TMOKapyu B TPU Pa3iIMuHHU THTIA
ropu (MIJIONUCTHYU, HIMPOKOJIMCTHH M CMECEHH) Ha Topa, 3acerHara OT IOoXKap
630 1o Morep, Ucnanus. Upes npunoOuBaHeTo 1 aHaIM3a HA MYJITUCIEKTPATHH
caTeJMTHU U300paKEeHUs] HUE HaOJI0JaBaxMe MPOMEHHUTE BhB BH3CTAHOBSBAHETO
Ha PacTHTEIHOCTTa B MHTepecyBamus HA peruoH. Unaexcst NBR Hu mo3Bonu na
OLIEHMM TEXECTTa W CTENEeHTa Ha IIeTHTE OT Topcku mnoxapu, nokaro NDVI
KOJINYECTBEHO OIPEJIENId 3€JIEHOCTTa M IOBTOPHHUS PACTEK HA PACTHUTEIHOCTTA.
GRVI u RVI npenocraBuxa mpeacrasa 3a GUHATE BApHAIUH B ChCTaBa U 3J[PABETO
Ha pactutenHoctTa. Hue wmpeHTuduuumpaxme pasnuuHH BpeMEBH M IPOCTpaH-
CTBEHHM MOJICIHM NIPU BB3CTAHOBABAHETO CJIEJ IOXKAp CpPed Pa3IMUHUTE THUIIOBE
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ropH, KaTo MNPUIOKHXME TE3W HMHAEKCH 3a mepuoja mexnay 2017 r. m 2021 r.
Hammre oTkpuTHS MoAYepTaBaT 3HAYCHUETO Ha pa30MpaHETO Ha Pa3HOOOpa3HUTE
peaKIy Ha Te3W €KOCHCTEMH KBbM TOPCKUTE ToXKapu. [lokaTo ce MmosBsBaT OOIIH
MOJICJIM Ha BB3CTAaHOBSIBAHE, KaTO MbpBoHadaHO HamasiBane Ha NDVI, mocnen-
BaHO OT pereHepalus, ce HaOJIo/JaBaT Bapualli¥ BbB BPEMETO W CTEICHTAa Ha
BB3CTaHOBSBaHE. Te3W pasIuKH ce NBDKAT HAa Pa3IMKUTE BHB BHIOBHS CHCTaB,
aZanTaiuTe KbM IOXKap W CKOJOTHYHHUTE IPOIECH, CICIU(PUIHN 32 BCEKH THII
ropa. B 3akmouenne, usnomsanero Ha uHiaekcu NBR, NDVI, GRVI u RVI
MO3BOJIIBA TO-HIOAHCHpPaHA OICHKA Ha JIMHAMHKATa Ha BB3CTAHOBSBAHE CIICH
mosxap.
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